Design Trade-offs for Decentralized Baseband Processing in Massive MU-MIMO Systems

Kaipeng Li, James McNaney, Oscar Castañeda, Chance Tarver, Charles Jeon, Joseph Cavallaro, Christoph Studer

Asilomar Conference on Signals, Systems, and Computers
November 5, 2019
Massive MU-MIMO systems

- Uplink
- Downlink

BS

B antennas
(\~hundreds)

U users
(\~tens)
How do we handle this much data?

Possible Limitations:
- Chip I/O and interconnection bandwidth
- On-chip memory and storage
- Computing capability of modern computing fabrics

Can be on order of Tbps

BS

Channel Estimation

Detector

Decoder

uplink

B antennas
(~hundreds)

U users
(~tens)
Decentralized to resolve bottlenecks

Centralized

Decentralized

uplink transmission
downlink transmission
Decentralized to resolve bottlenecks

Uplink Implementations
- Consensus Methods
- Feedforward Methods:
 - MMSE:
 - Fully Decentralized
 - Partially Decentralized
 - Zero Forcing:
 - Fully Decentralized
 - Partially Decentralized

Downlink Implementations
- Consensus Methods
- Feedforward Methods:
 - Zero Forcing:
 - Fully Decentralized
 - Partially Decentralized
 - Weiner Filter
 - Fully Decentralized
 - Partially Decentralized

How should we pick an implementation?
Outline

• Overview of decentralized architectures and algorithms
• Architecture trade-offs
• Algorithm trade-offs
• Precision trade-offs
• Practical design flow
• Conclusion
Decentralized feedforward architecture

Feedforward local information *only once* instead of multiple rounds to centralized unit

- **BS unit 1**
 - *local detect*
- **BS unit 2**
 - *local detect*
- **BS unit C**
 - *local detect*

- **Centralized control unit**
 - Information gathering, computing

Partially decentralized (PD) architecture:
less local computation + more centralized computation

Fully decentralized (FD) architecture:
more local computation + less centralized computation

Data transfer we are interested in. Would be on PCIe, NVLink, InfiniBand.
Uplink linear MMSE detection

Centralized linear MMSE (C-LMMSE) detection:

\[\hat{x} = \left(H^H H + \frac{N_0}{E_x} I \right)^{-1} H^H y \]
\[= \left(G + \frac{N_0}{E_x} I \right)^{-1} y^{\text{MRC}} \]

Partially decentralization: *decentralized* matrix preprocessing + *centralized* detection

\[\sigma^2: \text{error variance} \]
Uplink linear MMSE detection

Centralized LMMSE (C-LMMSE):

\[G = H^H H \quad y^{MRC} = H^H y \]

\[\hat{x} = (G + \frac{N_0}{E_x} I)^{-1} y^{MRC} \]

Partially Decentralized:

\[G_c = H_c^H H_c \quad y_c^{MRC} = H_c^H y_c \]

\[G = \sum_{c=1}^{C} G_c \quad y^{MRC} = \sum_{c=1}^{C} y_c^{MRC} \]

\[\hat{x} = (G + \frac{N_0}{E_x} I)^{-1} y^{MRC} \]

PD-LMMSE obtains the same \(\hat{x} \) as C-LMMSE

Complexity: \(O(B_c U^2) + O(U^3) \) mults.

Data transfer size: \(O(U^2) \) samples / cluster
Fully decentralized (FD-) LMMSE detection

Decentralized local detection

\[\hat{x}_c = (G_c + \frac{N_0}{E_x} I)^{-1} y_c^{\text{MRC}} \]

Fusion of local \(\hat{x}_c \) using weights, \(\lambda_c \):

\[\hat{x} = \sum_{c=1}^{C} \lambda_c \hat{x}_c \]

Optimal \(\lambda_c \) is a function of \(\sigma_c \)

Complexity: \(O(B_c U^2) + O(U^3) \) mults.

Data transfer size: \(O(U) \) samples / cluster
Downlink Beamforming

- **Linear beamforming:**
 - Power constraint: \(E[\|x\|^2] \leq \rho^2 \)
 - Precoding matrix: \(P \)
 - Linear precoding: \(x = Ps \)

- **Zero-Forcing beamforming:**
 - Precoding Matrix: \(H^H(HH^H)^{-1} = H^H G^{-1} \)
 - Power constraint: \(\hat{x} = \rho \|\hat{x}\|_2 \)

- **Channel reciprocity:**
 - TDD Transmission: \(H^{dl} = (H^{ul})^H \)
Decentralized feedforward ZF beamforming

Partially decentralized ZF beamforming:
Set $\rho_c^2 = \rho^2 / C$

$$G_c = H_c H_c^H$$

$$G = \sum_{c=1}^C G_c$$ \hspace{1cm} $$z = G^{-1}s$$

Broadcast z to local clusters

$$\hat{x}_c = H_c^H z, \quad \hat{x}_c = \rho_c \| \hat{x}_c \|_2$$

Complexity: $O(B_c U^2) + O(U^3)$ mults.
Data transfer: $O(U^2)$ samples / cluster

Fully decentralized ZF beamforming:
Broadcast s and set $\rho_c^2 = \rho^2 / C$

$$\hat{x}_c = H_c^H (H_c H_c^H)^{-1} s$$

$$\hat{x}_c = \rho_c \| \hat{x}_c \|_2$$

Complexity: $O(B_c U^2) + O(U^3)$ mults.
Data transfer: $O(U)$ samples / cluster
Decentralized feedforward Wiener Filter (WF) beamforming

Partially decentralized WF beamforming

Set $\rho_c^2 = \rho^2 / C$

$G_c = H_c H_c^H$

$G = \sum_{c=1}^{C} G_c$

$z = \frac{1}{\beta} (G + \gamma I_U)^{-1} s$

Broadcast z to local BS unit

$\hat{x}_c = H_c^H z$

Complexity: $O(B_c U^2) + O(U^3) + O(\beta)$ mult.

Data transfer: $O(U^2)$ samples / cluster

Fully decentralized WF beamforming

Broadcast s and set $\rho_c^2 = \rho^2 / C$

$P_c = \frac{1}{\beta_c} H_c^H (H_c H_c^H + \gamma I_U)^{-1} s$

$\hat{x}_c = P_c s$

Complexity: $O(B_c U^2) + O(U^3) + O(\beta)$ mult.

Data transfer: $O(U)$ samples / cluster
Architecture Trade-offs: PD vs. FD

PD-MMSE and FD-MMSE: Data transfer Depends on channel coherency

• BER: Centralized MMSE = PD-MMSE, FD-MMSE sacrifices BER

• Computation (timing) complexity: PD-MMSE = FD-MMSE

• N_{coh}: Period in which we update channel state information

\[
\begin{align*}
 m_{PD} &= \frac{C \times (U^2 - U + 2N_{coh}U)}{N_{coh}}, \\
 m_{FD} &= \frac{C \times 3N_{coh}U}{N_{coh}} = 3CU.
\end{align*}
\]
PD vs. FD trade-off on BER and data transfer

\[C = 4, \ U = 16, \ B_c = 32, \ B = 128, \ 16\text{QAM} \]
Simple i.i.d. Gaussian channel and Quadriga NLOS urban campus channel

(a) BER: PD-MMSE vs. FD-MMSE
(b) Data transfer size vs. \(N_{coh} \)
Decentralized feedforward architecture

Feedforward local information *only once* instead of multiple rounds to centralized unit

<table>
<thead>
<tr>
<th></th>
<th>Partially Decentralized</th>
<th>Fully Decentralized</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computation per cluster</td>
<td>Less computation</td>
<td></td>
</tr>
<tr>
<td>Internal Data Transfer to Central Node</td>
<td></td>
<td>Less data movement</td>
</tr>
<tr>
<td>BER Performance</td>
<td>Better BER</td>
<td></td>
</tr>
</tbody>
</table>
Algorithm Trade-offs: Explicit vs. Implicit method

• Example: PD-MMSE with explicit matrix inversion vs. implicit matrix inversion

• Implicit matrix inversion $A^{-1} = (G + \frac{N_0}{E_x} I)^{-1}$ for PD-MMSE

 • $A = LL^H$ (Cholesky decomposition, L is lower triangular matrix)

 • Get z by solving $Lz = y^{MRC}$ using forward substitution

 • Get \hat{x} by solving $L^H \hat{x} = z$ using backward substitution

• Per-symbol complexity of explicit and implicit methods depend on N_{coh}

\[
 n_{ex} = \frac{(2B_c U^2 + \frac{10}{3} U^3 - \frac{1}{3} U)/N_{coh} + 4B_c U + 4U^2}{N_{coh} + 4B_c U + 4U^2}
\]

\[
 n_{im} = \frac{(2B_c U^2 + \frac{2}{3} U^3 + \frac{1}{3} U)/N_{coh} + 4B_c U + 4U^2}{N_{coh} + 4B_c U + 4U^2}
\]
Complexity of explicit vs. implicit PD-MMSE

$C=4, U=16, B_c=32, B=128$

Implicit always has lower complexity
Reusing Uplink (UL) Results for Downlink (DL)

• Channel reciprocity in TDD system: \(H^{UL} = (H^{DL})^H \)
• Gram matrix: \(G^{DL} = H^{DL}(H^{DL})^H = (H^{UL})^H H^{UL} = G^{UL} \)
• Store and reuse computed uplink results for downlink to reduce complexity
• UL MMSE detection + DL WF beamforming can only reuse \(G^{UL} \)
• UL ZF detection + DL ZF beamforming can even reuse \((G^{UL})^{-1} \)
UL and DL integration trade-offs on BER and complexity

Example: UL PD-MMSE + DL PD-WF integration vs. UL ZF + DL ZF integration

$C=4$, $U=16$, $B_c=32$, $B=128$, 16QAM, LOS channel

MMSE and WF offer better performance

(a) BER: PD-MMSE detection vs. PD-ZF detection (b) BER: PD-WF precoding vs. PD-ZF precoding
UL and DL integration trade-offs on BER and complexity

Example: UL $PD-MMSE + DL PD-WF$ integration vs. $UL ZF + DL ZF$ integration

$C=4$, $U=16$, $B_c=32$, $B=128$, 16QAM, LOS channel

By integrating, ZF only requires 65% of the multiplies
Precision Trade-offs: 32-bit vs. 8bit floating point

Example: PD-MMSE and FD-MMSE
C=4, U=16, B_{c}=32, B=128, 16QAM, Quadriga NLOS urban campus channel

8-bit floating point reduces 4x data transfer size compared to 32-bit at only little loss of BER
Summary of Tradeoffs
Conclusion

• Decentralized baseband processing resolves complexity and interconnection bandwidth bottlenecks for massive MU-MIMO

• Practical massive MU-MIMO should leverage design trade-offs at different aspects:
 • Architecture trade-offs of PD and FD on BER vs. data transfer size
 • *Unless you expect very low coherence time, choose partially decentralized.*
 • Algorithms trade-offs of explicit and implicit methods on BER vs. complexity
 • *Use implicit matrix inversions whenever possible. Reuse results from uplink to downlink.*
 • Precision trade-offs of various data precision options on BER vs. efficiency
 • *Use fp16 or even fp8 unless BER is serious concern.*